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A variety of natural and synthetic compounds are known to self- | )
assemble to give transmembrane ion chanhelgdrogen-bonded ",L'i-&f?%_
macrocycles that can-stack are a new type of channel matif. "
£ o
1

Thus, folate quartets stack to give ion channels in lipid bilajers.
This folate assembly had a single-channel conductance 6220

picosiemens (pS), values consistent with the quar@A diameter. m ISe H e teemeee
We found that a noncovalent assembly of 16 guanosine monomers O .f'., 0 No Activity
H H
2

2 -
\ - 1 min

could be cross-linked to give a “unimolecular” G-quadruplex that
can transport Naacross lipid membranés.

We now report that the ditopic guanosirighocholatel forms Figure 1. Ditopic G-sterol; and control ‘b_is-lithocholamidé._ Typical
discrete channels in phospholipid membranes (Figure 1). Theselraces c_)f conductance vs time, after additioniladr 2, are depicted. The

S o guanosine end-groups are needed to form a transmembrane channel.
pores are large (nS conductance) and stable, with “open” times of
seconds, distinguishing them from most synthetic channels, which
typically conduct in the pS range with millisecond lifetinies.

Lehn and Barboiu have independently shown that ditopic
monomers with guanine end groups form supramolecular polymers
in cation-templated process€Rossible supramolecular structures
built from these ion-templated &juartets are depicted in Figure
2. In addition to the Gquartet channel, such structures might well
stack to form pores for transmembrane transport. Of relevance was
Barboiu’s demonstration that Neand K" could be transported
across films made from &Zquartet polymer§? e

The nucleosidesterol conjugatel has two guanosine groups  Figure 2. Possible G-quartet stacks formed by bis-G-lithocholdtén a
connected by a bis-lithocholate linker. This spacer was inspired by cation templated process.

Kobuke’s studies that showed that bis-cholic acid derivatives formed
cation-selective channels with pS conductaf€&/e envisioned

10

that membrane insertion &f followed by formation of G-quartets, = °
might well provide functional pores (Figure 2). S :
Compoundl was made by coupling -tBDMSi-5'-amino G? g—_;o
with a bis-lithocholic acid. Compound, with -NMe amide end O i}wptand (1:1)
groups, was a control. THel NMR spectrum ofl gave sharp peaks 2 = 1:crptand:KDNP (1:1:2)
in DMSO-ds, a polar solvent that inhibits self-assembly mediated 25 . .
by hydrogen bonding. In contrast, the NMR spectrurit of CDCl; 200 250 300 350 400
gave much broader signals, consistent with self-association in this wavelength (nm)
“poor” solvent. Figure 3. CD spectra of guanosine-sterb(0.43 mM) in CHC} at room

We used CD spectroscopy to gain evidence tHarms stacked temperature (bluelling), gfter addi_tion of 1 equiv of [2,2_,2]-cryptand (green
Gs-quartets in a nonpolar solveltFigure 3 shows CD spectra for Weer)é 3E?aﬁ]fg ;OI'Cﬂ'gf'd extraction of K" DNP" (red line). All spectra
samples ofl in CHCl;. The CD spectrum ol (blue) was taken '
after is_olation from a silica gel._ This sample_ showed a weak Cotton formed byl and K" also showed a strong Cotton band.at 295
band in the 206280 nm region, suggesting some stackel G 4 signal that has been previously observed for G-quadruplexes
quartets’® We added [2.2.2]-cryptand to ensure that any adventitious ¢5rmed from both nucleosides and DNA stradd& The control
cations bound by were sequestered. Indeed, the resulting spectrum compound, NMe amide, showed no CD activity under identical
(green trace) was inactive. We next stirred the mixturéd aind conditions. These data indicate that the kon can template
[2.2.2]-cryptand in the presence of excessX6-dinitrophenolate  omaion of stacked @quartets byl in a nonpolar environment.
(DNP)._ The CD spectrum of ditopit was much different after We next used voltage-clamp experiments to show tHarms
extraction of K'DNP~ (red trace). This sample showed a CD  gjngje channels in planar membranes: some of these channels had
signature diagnostic for stacked G-quartets, with a positive band remarkably long lifetimes and large conductance values for pores
at =266 nm and a negative peakat= 240 nmi®The complex  maqe from a synthetic compoufitFigure 4 shows representative

* Department of Chemistry and Biochemisry. reco_rds of conductance, as mediatedlbin a planar t_)ilayer e_lt an

* Department of Biology. applied voltage of~10 mV in 1 M KCI (trans)/KCI (cis) solution
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oansL VWV Vil - _ _ 1 within the phospholipid bilayer. We envision that the bis-
1s Numbar of Opan lithocholate linker inl provides the walls for the transmembrane
e ——Closed |Conductance | Method 1| Method 2| pore and a cation-filled G-quadruplex, formed upon hydrogen-bond
L I S— Open | <01ns | 100 | 146 | self-assembly, serves as a structural pillar that anchors the assembly
5 | 1-5n8 | a1 | - 420 | within the membrane.
o s0ns 5:202:;'3 i ‘1'2 i 1; In summary, ditopic guanosine-sterblforms large and stable

ss M " f - channels. The smaller conductance values near 0.1 pS may arise
W‘W I as ions are moved through the central channel of a G-quadréiplex.

However, pores that conduct on the 20 nS scale must necessarily

Figure 4. Representative traces from voltage-clamp experiments indicating ; Py ;
distinct conductance values recorded in the presendeadf-10 mV in 1 have diameters that are significantly larger than that provided by a

M KCl. The number of open events are counted from a total of six CGaguartet. It is tempting to suggest that assemblies like those
experiments. Three of the experiments were conducted by adding compounaddepicted in Figure 2, structures previously proposed to explain
1 (3.1 mM) to the cis side of the chamber after the planar bilayer membrane formation of G-quartet polymer§,are responsible for the function
was f_ormetd (Metz‘)d 1in SUpp%rti”g Irt];ortmati?n). Jhe opfg(e);mt;hree of 1. Regardless of the actual membrane-active structures, the
experiments were aone using membranes that contained com .
m,a) premixed with the phos?)holipids used to form membrane (Method 2 demonstration thaltforms Iz?lrge and stable transmembrane channels
in Supporting Information). suggests that this nucleoside-sterol may well be able to allow larger
biomolecules to move in and out of liposomes and/or cells. We

are currently pursuing such studies.
(pH 7.0). After either application df to thecis side of the planar

bilayer (Method 1) or after premixing compoutdwith the lipid Acknowledgment. J.D. thanks the Department of Energy for.
mixture (Method 2), conductance states of different magnitudes SUPPOrt. J.D. and M.C. thank the Maryland Department of Economic
appeared and disappeared over-g32h period. This pattern of ar_wd Business Dey_elppment for support from the Maryland Nano-
“open” and “closed” conductance is consistent with dynamic Biotechnology Initiative.
formation and disintegration of self-assembled channels formed by Supporting Information Available: Experimental details and
1 spectra. This material is available at http://pubs.acs.org
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